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Fluid oscillations in an open, flexible container
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Abstract. In this paper we study normal oscillation modes of an incompressible fluid in an open container, part of
the wall of which may be flexible. The flexible part of the container wall is modelled by a membrane. We first
investigate the eigenfrequencies of an inviscid fluid in a flexible container. We are able to show, by analytical means,
that the eigenfrequencies of an inviscid fluid decrease when part of the rigid container wall is replaced by a
membrane. The problem of viscous fluid oscillations in a flexible container is then studied numerically using the
finite-element technique. Two different types of eigenmodes are observed: free-surface oscillation modes and
structural vibration modes. The dependence of the two modes on the Bond number (measure of the ratio of
gravitational and tension forces) and the Reynolds number is investigated.

1. Introduction

Fluids oscillating in an open, flexible container occur in a wide variety of situations ranging
from propellant motion in tanks of air- and spacecraft to oil and water oscillations in storage
tanks. The flexible container walls may be deflected under the action of fluid forces exerted
on the walls. Since the motion of the fluid is in turn affected by the moving container wall,
this type of problem is generally known as a fluid-structure interaction problem:.

The first difficulty one encounters when dealing with the fluid-structure interaction
problem, is how to model the system of fluid and structure. Depending on the characteristics
of the structure it may be modelled by for example a membrane, a shell, a thick plate or a
solid obeying the equations of elasticity. Likewise, depending on the type of fluid interacting
with the structure, viscous effects may either be neglected or may have to be taken into
account and the incompressibility constraint may or may not have to be imposed. It will be
clear that any combination of the structure and fluid models will lead to problems with
different characteristics and solutions with different properties. This leads to the second
major difficulty, namely how to solve the, often non-linear, partial differential equations.
Again depending on the system to be investigated, one may either have to solve the
complete non-linear set of equations or linearize the equations and solve the resulting linear
problem. Regarding the modelling problem, one can find virtually every structure model in
the literature while the fluid part of the model is often dealt with by neglecting viscous
effects. Concerning the solution of the equations, the emphasis has been on solving the
linear problem due to the inherent difficulties of solving non-linear partial differential
equations and modelling non-linear interactions. Lately however, due to the increase in
computational power and the development of new numerical techniques, the non-linear
problem has attracted much attention. In this paper we shall restrict ourselves to the linear
problem. An overview of the literature concerning both the modelling and solution
techniques regarding fluid-structure interaction problems, is given by Belytschko [1} and
Zienkiewicz and Bettess [2].
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When dealing with the linear fluid-structure interaction problem one is often interested in
the eigenfrequencies of the coupled system; how does the fluid affect the eigenmodes of the
structure and vice versa, and indeed how is the structure deflected when the fluid oscillates
in one of its eigenmodes. Also of interest is what happens when one of the principal
eigenmodes of the fluid is near a principal mode of the structure. Miles [3] was one of the
first to deal with the eigenfrequencies of the fluid-structure problem. He investigated, using
analytical techniques, how the eigenfrequencies of a cylindrical flexible container are
affected when it contains an inviscid fluid. Coale [4] dealt with a similar problem of inviscid
fluid oscillations in a cylindrical, elastic, massless shell, with particular emphasis on the
modal displacements of the shell. Boujot [5, 6], Valid and Ohayon [7] and Berger et al. [8],
among others, have investigated the problem of incompressible, inviscid fluid oscillations in a
thick deformable shell, the motion of which is governed by the equations of linear elasticity.
A number of existence and uniqueness results are obtained and various aspects of the nu-
merical solution of the equations using the finite-element technique are investigated. Invis-
cid, compressible fluid oscillations wholly contained in a (partly) flexible container have been
studied by Hamdi et al. [9], Morand and Ohayon [10], Geradin et al. [11] and Deneuvy [12].

In this paper we will consider the motion of an incompressibile, viscous fluid in an open
flexible container. The container wall is modelled by a membrane following Schulkes and
Cuvelier [13]. In Section 2 the problem to be considered is introduced and the governing
equations are presented. Section 3 deals with the deflection of the membrane due to the
hydrostatic pressure. In Section 4 we consider the related problem of inviscid fluid
oscillations and are able to show analytically, that under certain assumptions the eigen-
frequencies decrease when a rigid wall is replaced by a membrane. In Section 5 a number of
qualitative properties of the spectral problem, which results from the linearized Navier—
Stokes equations, are derived. We find that two types of normal modes exist, namely modes
related to free-surface oscillations and modes related to membrane vibrations. The two types
of modes have different damping characteristics and depend differently on the parameters.
Section 6 deals with the discrete eigenvalue problem obtained after a finite-element
discretization has been applied. Some general results concerning eigenvalues of the discrete
eigenvalue problem are obtained. The eigenvalue problem is solved using an inverse
iteration procedure. In Section 7 numerical results are presented. Particular emphasis is
placed on the fluid motion resulting from normal mode oscillations and the damping
characteristics of various types of normal modes. Both of these aspects of fluid-structure
interaction problems have not received a great deal of attention so far. We also investigate
the case in which the eigenfrequencies of the free-surface oscillations and membrane vibra-
tions are close. The Reynolds number is found to be an important parameter in this case.

2. Problem formulation

Consider an open 2D container C with boundary denoted by S

dC. Let a part of the container be filled with a Newtonian,

incompressible fluid of density p; and kinematic viscosity v.

The region occupied by the fluid is denoted by ) with

boundary 4Q. The free surface of the fluid is denoted by § R

and the area of fluid in contact with the container wall by

'=0QNaC. Some parts of the container wall may be F
flexible; let F and R denote the flexible and rigid parts Fig. 1.
respectively of the container wall in contact with the fluid,

viz. FUR=T (cf. Fig. 1). The equations describing the motion of the fluid in () are the
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Navier—Stokes equations

ﬂ+u-vu+-1-vp=yv2u+f, (2.1)
ot Pr

and the incompressibility condition
V-u=0. 2.2)

In the above equations u denotes the fluid velocity, p the pressure and f the external body
force. Equations (2.1) and (2.2) have to be supplemented with a set of boundary conditions
in order to be able to solve them. On the free surface S we prescribe normal and tangential
stresses, Viz.

0,= ~Pg» o,=0. (2.3)

Here p, denotes the outside gas pressure and o,, o, denote the normal and tangential
stresses respectively, given by

o,=(o'n)'n, o,=(c'n)-7,

in which n and 7 denote unit normal and tangential vectors respectively and ¢ is the Cauchy
stress tensor (cf. Batchelor [14]). On the free surface we also have the kinematic condition

% a(x, ) =0, (2.4)

in which a(x,t) =n-(x; —x) =0 is the equation of the free surface S (x4 is the position
vector of §) and D/Dt denotes the Lagrangian derivative.

On the rigid part of the container wall R the no-slip condition characteristic of viscous
flows is prescribed, viz.

u=0. (2.5)

The flexible part of the container wall is modelled by a membrane of density p,, and tension
T. The boundary conditions on F become

o=—p L _, OB
pg RC pm dtz s (26)

u-r=0,
in which R_ denotes the radius of curvature of the membrane considered positive when the
corresponding centre of curvature lies outside the liquid. The equation of the membrane is

given by B(x,t) =n-(x; —x) =0 in which x, denotes the position vector of F relative to
some origin. On F we also have the kinematic condition

% B(x, 1) =0. @2.7)
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The end points of the membrane are assumed fixed to rigid parts of the container wall so that
the points at which F and R intersect the condition u = 0 is prescribed. The last condition to
be satisfied is the volume constraint - the quantity of liquid in the container, V;, remains
constant so that

de=n. (2.8)

Equations (2.1) and (2.2) together with boundary conditions (2.3)-(2.8) completely describe
the motion of a viscous, incompressible fluid with a free boundary in a container of which
part of the wall may be flexible. Although (2.1) and (2.2) can in principle be solved subject
to (2.3)—(2.8), the solution of the complete set of non-linear equations is beyond the scope
of this paper. We linearize the governing equations by considering only small perturbations
from the steady state.

Consider the steady state u =0. The momentum equation reduces to

1
— Vp,=f inQ,, (2.9)
Py
the free surface condition becoines
—Po=-p, onS,, (2.10)

and the condition on the flexible part of the container wall reads

T
—p0=—pg+—R— on F,. (2.11)

Co

In the above and subsequent equations the subscript O refers to steady state parameters.
Equations (2.9)—(2.11) together with the volume condition (2.8) define the position of the
steady state free surface S, and the shape of the flexible container wall F,. We will take
f= —g§ where ¥ is the unit vector pointing along the positive y-axis and g the gravitational
acceleration. Note that since we have neglected surface tension effects S, will be a flat
surface perpendicular to the y-axis. Let us now perturb the steady state such that the
position vectors of § and F are given by

Xg =xso+ g ,
and
Xp =Xp t éng.

The vectors ng and n, are the outward unit normals to §, and F, respectively and n and £
denote small normal deviations from the steady state surfaces S, and F,. The linearized
equations in dimensionless form describing the fluid motion are then

Ju _ 1 o
TP RV inq,. (2.12)
Vou=0

and the linearized dimensionless boundary conditions become
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g, =77
=0
o om( ©0 S0 (2.13)
.n_E
u=0 on R, (2.14)
—ggem+ (£ 0_215)_ 9%
0. =4y "r ¥ Bo RZCO+ as?) "0 a8
a-r=0 on F, . (2.15)
n=%
ST

In the above equations Re = [U/v is the Reynolds number (I is a length scale and U = Vgl a
velocity scale), Bo = pfgIZ/T is the Bond number which is a measure of the ratio of
gravitational and tension forces in F, r, = p,/lp; is the ratio of the membrane and fluid
densities and s is a curvilinear coordinate along F,. Note that the volume condition (2.8) is
satisfied since the problem is solved on the fixed domain (},,.

In the derivation of boundary conditions (2.15) we have assumed that the tension 7T in the
membrane is constant. However, since the membrane is not massless, the gravitational force
will create a tension difference in the membrane which is of order O(Bo), so that strictly
speaking only small values of Bo may be considered. For convenience we will however
neglect tension variations due to the mass of the membrane. A viscous flow for which the
no-slip boundary condition is satisfied also creates a tension difference in the membrane due
to viscous drag effects. It can, however, be shown (cf. Batchelor [14], Section 5.11) that the
resulting tension difference is proportional to the square of the variation of the fluid velocity
tangential to the wall. It follows that viscous drag effects are of second order and may be
neglected in the linear problem.

3. Steady state deflection of F,

In this section we shall be concerned with a 2D rectangular container of length L and height
h, filled to the brim with a fluid. Let us, as an example of the calculation of the steady state
deflection, assume that a part of the wall at x = L is flexible. The treatment of other walls is
analogous. Consider the case in which the wall at x = L consists of a membrane, fixed at
y =0 and at y = a(<h), and a rigid part for a <y < h, cf. Fig. 2. In the interval y € [a, k] the
deflection is zero but on 0<y=a we ex-
pect the wall to bulge under the fluid pres- y
sure exerted on the membrane. Equations y=a
(2.9)-(2.11) completely define the shape of
the deflected membrane. From (2.9) and
condition (2.10) we obtain

Po=pf+ (x-— Xso) + D &(&y)

which on substituting into (2.11) gives

T x=0 x=7

pig(y —h)= R Fig. 2.
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Let £,(y) denote the function describing the deflection of the membrane relative to the line
x = L. Using the familiar expression for the radius of curvature we find that the above
equation can be written in dimensionless form as follows

"

(ITO,z)sxz=8(y—h)- (3.1)

with boundary conditions
£0(0) = &y(a) = 0.

In (3.1) the prime denotes differentiation with respect to y and we have replaced Bo by .
The solution of the non-linear differential equation (3.1) can be approximated analytically
when ¢ is small, corresponding to the case in which tension forces dominate gravitational
forces. We will seek a series solution of the form

&N =P+ V() +-,

each ¢“)(y) satisfying the boundary conditions at y =0 and y = 4. Substituting the above
form of &, into (3.1) we find, on equating the coefficients of each power of ¢ to zero, that

&(3) =g [y’ =3y + a3k~ a)y] + O(s"). (32)

Note that the case a = h corresponds to an entirely flexible wall.
Solving (3.1) numerically allows us to consider a wider range of values of e. For the
solution of the non-linear differential equation we use Newton’s method. Let

F(&)=¢€1— e(y —h)(1+ £7)°,

so that F( £,) = 0 is the equation to be solved subject to the two boundary conditions. Define
the sequence §§,1), §f,2), R - f)")—> £, by the following linear problem

FI(&P)€577]= F'(£€] - F(£T) (33)
where F'(¢)[¢] denotes the Gateaux derivative of F defined by

FOo0] = lim 5 (Fx o+ 86) = F(x))

The linear problem defined by (3.3) can be
solved using standard finite-difference tech-
niques. Each iteration requires the solution
of a system of equations, but the sequence
£, €9, ... converges quadratically. In
Fig. 3 we show shapes of the membrane for
various values of &, corresponding to the
analytical and numerical results. Observe
that the analytical and numerical results
agree very well for £ =<1. The numerical
solution procedure converges for values of

€ up to £ =3.45. Near that value of ¢ the

derivative of t v=0 tends to infinity. Fig. 3. Plots of the deflected membrane for ¢ =1 (a),
N Goaty=0te S, t R y £ =2(b) and ¢ =3.4(c). The dotted lines are the cur-

For larger values of ¢ a Cartesian function ves given by (3.2), the solid lines correspond to nu-

representation of the membrane is no merical calculations.

-]
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longer possible since the function would be multi-valued for y <0. A numerical technique
for the calculation of the membrane deflection in that case can be found in Schulkes and
Cuvelier [15].

4. Inviscid fluid oscillations

Before we proceed to solve problem (2.12)—(2.15) numerically, we investigate the related
problem of an inviscid fluid oscillating in a flexible container. Under certain conditions we
are able to solve this problem analytically which gives us more insight into the problem. In
this section we consider the inviscid equivalent of problem (2.12)—(2.15), i.e. neglect all the
terms containing the Reynolds number and replace the no-slip condition on R by the
non-permeability condition. Assume that the fluid flow is initially irrotational. It is well-
known that for inviscid fluids the flow remains irrotational so that we can write u = V¢ where
¢ is a velocity potential. Assuming that p, ¢, n and ¢ exhibit a temporal behaviour of the

iAs

form e, it follows that equations (2.12)-(2.15) reduce to

Vi¢=0 inQ,, (4.1)
% =A% onS,, 4.2)
% =0 onR, (4.3)
:—:z <%)+<RL§O +€(rpA2—?'np)) %=—8)‘2¢ on Fy, (4.4)
%=0 onRNF,. (4.5)

Note that n and ¢ have been eliminated using the kinematic conditions on S, and F, and that
Bo has once again been replaced by e.

We will attempt to solve (4.1)-(4.5) within the context of perturbation theory with £ <1
as the perturbation parameter. However, the fact that the domain 2, depends on ¢ through
the shape of the wall F,, poses a problem: functions defined on the zeroth-order domain will
in general not be defined on the whole of the domain of the first order problem. This is
clearly undesirable. Let us therefore assume in this section that the shape of F; does not
depend on ¢, i.e. we neglect the bending of the membrane due to the hydrostatic pressure
(an a posteriori justification of this assumption, based on numerical results, will be given in
Section 7). The boundary conditions (4.4) and (4.5) will now be written in a somewhat
simplified, more convenient form. Let the membrane be fixed at the points s =0 and s = a
(the begin and end points of F,), conditions (4.4), (4.5) can then be shown to satisfy

J
W —en | K, 0090)00 onF,, (+.6)
in which
<tan (@) Sn(ks)ltan(xa) cos(k8) —sin(k)], s <6
K (s,6)=

« tan(xa) sin(«6)[tan(ka) cos(ks) —sin(ks)], s>0,
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with
K= \/E(rp)t2 -y -nf)”2 .

In order to solve (4.1) subject to boundary conditions (4.2), (4.3), (4.6) using perturba-
tion techniques, we expand A and ¢ in a power series of ¢, like

6=0P+edpP+---, A=AP+aaV ...,

Substituting for ¢ and A in (4.1)-(4.3), (4.6) and equating the coefficients of like powers of £
to zero, we find the following series of problems:

g V=0 inQ,,
9
e =A9%©®  on So s
56
o =0 on RUF,,
g V=0 inQ,,
3¢V o2, ©), (1) 4 (0)
—— = AP+ 20 g onS,,
on
o™
¢—=0 onR,
on
o™
¢ =A‘°’2f Ky (s,0)¢ (@) du onF,.
an F

The kernel K (s, ) in the last equation is given by

%(a—@), s<6
Ky(s, 0) =
E(a—s), s>0.

We will now prove that the modulus of the eigenfrequencies of the fluid decreases when a
part of the rigid container wall is replaced by a membrane under the aforementioned
assumptions (i.e. neglecting bending due to hydrostatic pressure). We have to show that
A <0 when A'” >0 and vice versa. Using Green’s second identity

M2, (0) _ 1 (0)g2 (1) = (1) — 40
[ 0076 - 40D ax= [ (902 g0 2 ),

we find, on substituting the boundary conditions and employing the fact that ¢‘® and ¢
satisfy Laplace’s equation, that A" is given by

LO ¢(°)(S)< Lﬂ Ky(s, 0)9 V() do) ds

AW = 1)@

(4.7)
(0)2
5 ¢ ds
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The denominator in (4.7) is positive so it remains to show that the double integral in the
numerator is positive. For this we have to show that the integral operator

Kof=| . Kufs.0)f(6)d0,

is positive definite. The operator K|, is self-adjoint and hence its eigenvalues are real. In
appendix A it is shown that the eigenvalues of K|, are in fact strictly positive from which it
follows that the integral operator is positive definite, hence the result. Note that this result
can be generalized easily to the case in which the container wall consists of a number of
distinct membranes each with fixed end-points. The integral in the numerator of (4.7) is in
that case replaced by the sum of the integrals over the membranes. The fact that the
modulus of the eigenvalues decreases when part of the rigid container wall is replaced by a
membrane, is what one might have expected on intuitive grounds since the system as a whole
has more degrees of freedom and is as a result less ‘rigid’.

Next we investigate the specific case of the rectangular container dealt with in the previous
section, i.e. the LHS and bottom walls are rigid and the RHS wall is flexible in the interval
y €(0, a) and rigid for y € [a, h]. The zeroth-order problem can be solved readily, using
separation of variables, to give

k k
6 =cos —Zx cosh —Zy , A =

k_ﬂ't hkﬂ'h
L M

where the subscript k refers to the kth eigenmode. Substituting ¢{” and A(” into (4.7) yields
. @ 1 <sinh 2q
2L g*cosh®(kwh/L) \ 2q

2
A = )\io)[l _ 1- p (cosh g — 1)2)] , (4.8)

in which g =kma/L. In Figs 4a,b we show plots of AA, =(A® —,)/A{” versus the
container length for various values of a and k = 1, 2. Observe first of all that the influence of

. 020 drrrrhrrrbrrrhrrhrerhrebresbrrbrerbe
g

(b)
L —p L —p

Fig. 4. Plots of AA, versus L for =1 and various values of a, for the first (a) and second (b) eigenmode.
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the membrane on the eigenfrequencies decreases as a decreases and that the interaction of
the fluid and the structure is strongest for the first eigenmode. In order to explain these
observations we use the well-known fact that the fluid motion resulting from free-surface
oscillations penetrates the fluid to a depth of about one wavelength (cf. Lamb [20]) and that
the fluid velocity is maximal near the free surface. It is evident that as a decreases the effect
of the membrane on the eigenfrequencies will decrease simply because a smaller part of the
container wall is flexible. In addition however, for small values of @ the membrane will be in
contact with a region of fluid in which relatively low pressure gradients occur (as a result of
the low fluid velocity) so that the fluid is capable of deflecting the membrane only slightly.
The change of the eigenfrequencies of the fluid will be correspondingly small. A similar
argument holds in order to explain the observation that the interaction is strongest for the
first mode and weaker for subsequent modes.

Interesting is the observation that AA has a well-defined maximum for some value of L.
The position of the maximum and its height are dependent on both a and k: for a =1.0,
k =1 the maximum occurs at L = 3.02 while for a = 1.0, k =2 the maximum is situated at
L =6.03. It is easy to show that AA, tends to zero in the limits g— 0 and g — ». A remark is
in place regarding the results presented in Figs 4a,b. We have taken A =1 and calculated
A, for container lengths up to L =9. The linear theory of small free surface deflections is,
however, valid only when the elevation of the free surface is small compared with the depth
of the fluid. Hence, the results in Figs 4a, b for L greater than approximately 3 should be
treated with caution. However, we do expect AA, to decrease as L increases because the
potential energy of the fluid increases (proportional to L) while the potential energy of the
membrane remains constant if we increase L. Thus the effect of the membrane on the fluid
motion will decrease.

We conclude this section by considering the case in which the side walls of the rectangular
container are rigid but the entire bottom wall consists of a membrane. The solution of the
zeroth-order problem is as in the previous case. Substituting for ¢{” and A(” in (4.7), where
the integrals in the numerator are now over the bottom wall, we obtain

A= /\5‘0)[1 B % <%>2 coshz(:wh/L) <1 - (nfu')2 (- (_1)")2>] )

Note that AA, —0 as L—0, but unlike the previous case AA, x L* for large L, i.e. the
interaction between fluid and membrane motion increases as L increases. This may be
explained by the fact that the total energy of both the fluid and the membrane increases as L
increases.

5. Viscous oscillations: properties of the spectrum
Equations (2.12)—(2.15) will be solved numerically using a finite element approach. To that

end we write (2.12)—(2.15) in a variational formulation for which we use the identity (cf.
Cuvelier et al. [21]),

e V) vax= (G -rey)
fno<at+Vp ReV“ vdx = 0, \ 31 v—pV-v]dx

a9~
+ Re a(u, v) s, (o,v,+ ov,)ds,
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in which

2
du, Jdu\(dv, dv;
=1 LR .l)( i 1) — =
atu.v) z,él no<6xj ax,\ax, " ax) X T BTy

Let us assume that u, p, n and £ exhibit a temporal behaviour of the form exp( ut) in which
w is in general a complex quantity. The variational formulation of equations (2.12) becomes
on employing the above identity and the boundary conditions (2.13)—(2.15):

find u and p such that for all suitably smooth functions v and ¢

1 f 1
. —_ . —_— + J—
LO (pu-v—pV-v)dx + Re a(u,v) - u,v,ds (5.1)
+f [ +1 ¥ +——-1 <%ﬂ—u"v")]d =0
F I"Lrpunvn In unvny nF In BO ds Js Réo §=v,
f gV-udx=0, (5.2)
)

where u and p are in general complex functions. It is important to note that all degrees of
freedom related to the membrane have been eliminated from the problem by virtue of the
kinematic condition. We are left with a problem in which only quantities related to the fluid
(fluid velocity and pressure) are unknowns. This type of problem is considerably easier to
deal with than the one in which both fluid and structure unknowns are present.

Let us now investigate the spectrum of the problem defined by equations (5.1) and (5.2).
To that end we consider the quadratic functional defined by

1 1
D = (U, W, + 7, (1 ) p) + 1 o A, 0) + (8, ), + o Dy 1)

The functional @ takes on a stationary value (equal to zero) when u is a solution of equations
(5.1), (5.2). We have introduced the notation

(u,u)y, = LO lul*dx, ... etc.,

] (o~ ) 222
(un’un)_ Fy u,u, oy nF RZCO s ds S

Set @ equal to zero and treat the resulting equation as a quadratic in u. Solving for u we
arrive at the following qualitative properties concerning vibration modes of a viscous fluid in
an elastic container:

(i) The problem as defined by (5.1), (5.2) is stable with respect to infinitesimal
perturbations when

(un’un)SO+(1/Bo)b(un’un)>0;

(i) If
—E—(a(u w)Y=4((u,0), +r,(u,u,) )((u u,) +Lb(u u )>
ReZ ’ = » B/, p\¥n> “n/F, n»%nlSy ' Bo n>%n) ]

then the eigenvalues corresponding to the eigenfunctions u are real and negative.
This corresponds to an aperiodic damping process;
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(iii) If
1 2 1
ﬁi (a(u7 u)) < 4((“9 u)ﬂo + rp(urﬂ un)FO) (un’ un)so + E‘; b(un7 un) ’
then the eigenvalues are complex occurring in complex conjugate pairs. The real part
of the eignvalues is negative so that oscillations are damped.

It is easy to show that the stability condition in (i) is satisfied for sufficiently small values of
Bo (by virtue of the fact that 1/R, and § -n ~ Bo, cf. Section 3). The stability requirement
stems from the fact that the membrane is taken to be perfectly elastic and is physically
analogous to the stability of a pendant liquid drop: for a certain value of the surface tension
and strength of the gravitational field (essentially the Bond number) there is a maximum
drop size — larger drops are not stable.

Let us consider the expression for u in some more detail when Re is large. Retaining only
terms to first order in 1/Re we obtain

1 1/2
—a(u, u) i( (4, 4, )5, + Bo b(u,, u")>
I .

2Re[(u’ u)ﬂo + rp(un’ un)Fo (u7 u)ﬂo + rp(un’ un)FO

s (5.3)

Now assume that for a certain set of parameter values eigenfunctions u exist such that u on
F, is small compared with u on §,. Since the terms containing Bo and r, in (5.3) are
quadratic in u on F, they may be neglected in this case. Hence equation (5.3) reduces to

—a(u,u) ,((u,,, u,.)s(,)”2 . (5.4)

=~ x1
™ 2Re(w, w),, W, u)p,

Equation (5.4) is the familiar expression for the eigenfrequencies of weakly damped
free-surface oscillations of a viscous fluid in a rigid container expressed in terms of the
corresponding eigenmodes, see for example Kopachevskii and Myshkis [16]. In sequel these
modes will be termed free-surface oscillations mode.

Assume next that eigenfunctions exist such that u on S, is much smaller than on F;. The
term related to free surface oscillations in the denominator of Im( x) in (5.3) may then be
neglected giving

1 1/2
_a(u’ u) . BO b(un’ un)
*1 .

K7 2Re[(u, w)g, + 7, (4, 1,)5] N, W+ 7, (0, 1)

(5.5)

Observe that Im( ) in (5.5) is proportional to 1/v Bo. The functional dependence on Bo is
in fact the same for a freely vibrating membrane (recall that eigenfrequencies of a membrane
are proportional to the square root of the tension). We conclude, therefore, that eigenmodes
for which u is small on §, are associated with normal mode oscillations of the membrane.
These modes will be called structural-vibration modes. Observe that Re( ) in (5.5) contains
an extra term in the denominator as compared with Re(u) in (5.4). This indicates that the
structural-vibration modes may be damped less than the free-surface oscillation modes.

Of interest is the term representing the inertia of the fluid, (u, u)q,, in the denominator of
Im(w) in (5.5). It is not hard to show that the eigenfrequencies of a freely vibrating
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membrane in terms of the eigenfunctions are given by the expression Im(u) in (5.5),
however, without the fluid inertia term (Im(u) is in that case just the Rayleigh quotient
where u, corresponds to the deflection of the membrane). It follows that the eigenfrequen-
cies of a membrane in contact with a fluid will be less than those of a freely vibrating
membrane. It appears, therefore, that the effect of the fluid is essentially to increase the
mass of the membrane. This observation is related to the concept of added-mass. Namely,
when solving fluid-structure interaction problems numerically one can, in certain cases,
eliminate the unknowns related to the fluid motion by adding an ‘““added-mass” matrix to the
mass matrix of the dry structure, refer to for example Deruntz and Geers [17] and Muller
[18].

6. The discrete eigenvalue problem

Although the finite-element discretization technique can be applied directly to equations
(5.1) and (5.2), the presence of the incompressibility constraint leads to a system of
equations which has unfavourable properties from a numerical point of view. Namely, either
the bandwidth of one of the matrices is large or a partial pivoting procedure has to be
applied, both leading to a substantial increase in computing time. These problems can be
eliminated when the continuity equation is perturbed by a small (penalty) parameter times
the pressure, viz.

g,p+V-u=0,

or in variational formulation

g, Lo pq d)c+J’00 qgV-udx=0, (6.1)
where ¢, <1 (usually ¢, ~ 107°). Dividing Q, up into triangles and writing the velocity u as a
linear combination of extended quadratic basis functions and the pressure p as a linear

combination of linear basis functions (cf. Cuvelier et al. [21]), we obtain the discrete
equivalents of (5.1) and (6.1), namely

1 1 1
pMi— L7+ 7o A+ " B i+ " Bri+uM.i=0,
e,Dp=—Li.

The complex vectors ii and p contain the velocity and pressure unknowns respectively in the
nodal points. Eliminating the pressure from the above equations we obtain an eigenvalue
problem of the form

(W’Mg +pS+B)ia=0, (6.2)

in which
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1 _ 1
M, =M+M,, s=8—LTD1L+ﬁA, B, =B, +B
P

Fy
All matrices are real and symmetric, and My, S are positive definite. M and M, are mass
matrices corresponding to the fluid and membrane motions respectively; M, is singular. B,
and B are matrices representing the potential energies of the perturbed free surface and
membrane respectively and are both singular since only the degrees of freedom correspond-
ing to the free surface and the membrane give non-zero entries.

In order to investigate the properties of the discrete eigenvalue problem we write (6.2) in
the form of standard eigenvalue problem, viz.

(-arr'm, —aa;s)(5)=(5) 63

where the substitution it = ¥ has been made. Consider the case in which the region ), has
been discretized in such a way that on the free surface we have ng degrees of freedom, on the
membrane we have n, degrees of freedom and the total number of degrees of freedom is
equal to n>ng+ ng. It follows that rank(M;) = rank(S) = n and rank(B;) = rank(B;) +
rank(B) = ng + np. Hence, the large matrix in (6.3) is of order 2n with rank equal to
rank(B,) + rank(S) = n + ng + n,. It follows immediately that 2n—(n+ng+n.)=n—
ng — n, of the eigenvalues of (6.3) are zero. The corresponding eigenvectors are of the form
(@, 0)" with & € N(B,) where N(B,) denotes the null-space of B,. Next consider the case in
which @ € N(B,) and p # 0. From (6.3) we obtain

= pi, (6.4)
(kM +8)i=0. (6.5)

<

It follows that eigenvectors of (6.3) exist with it € N(B;) and u # 0 if ¥ is an eigenvector of
(6.5) with corresponding eigenvector u and, moreover, vE N(B,) as follows from (6.4).
Since the matrices M, and S are positive definite it follows that (6.5) has a complete set of
eigenvectors and the corresponding eigenvalues are real and negative. Since N(B ) has order
n—ng— n, it follows that n — ng — n; linearly independent eigenvectors of (6.5) are in
N(B;). Thus (6.3) has n—ng—n, real and negative eigenvalues with corresponding
eigenvectors of the form (i1, ¥) with @i, ¥ € N(B,). We conclude that the eigenvalue problem
(6.2) has 2n eigenvalues of which n—ng—n, are zero and n—ng~ n, are real and
negative. The remaining 2ng + 2n eigenvalues correspond to the free-surface modes (2n;
eigenvalues) and structural-vibration modes (27, eigenvalues) occurring in complex conju-
gate pairs. The properties of the eigenmodes formulated in the previous section are related
to these eigenvalues.

The quadratic eigenvalue problem (6.2) is of the type often encountered when dealing
with structural vibrations. In general one is interested only in the eigenmodes corresponding
to the complex eigenvalues. Of those eigenmodes, the ones corresponding to eigenfrequen-
cies with the smallest imaginary parts are generally of principal engineering interest.
Calculating the whole spectrum would then be a wasteful computational exercise. Schulkes
and Cuvelier [13] found that if only a few eigenmodes are of interest, then these can be
calculated efficiently using an inverse iteration procedure. This procedure will also be used in
this paper, for details the reader is referred to the aforementioned paper.
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7. Numerical results

We start our numerical experiment with a comparison of numerical results and the analytical
results of Section 4. To that end we consider the container dealt with in Section 3 with A =1,
a=0.9, Bo=0.1 and assume that the container is entirely filled with a viscous fluid with
Re=5x 10> The region Q, is discretized by 504 triangular elements, refined at the
boundaries in order to capture the boundary layer. In the numerical calculation the bending
of the membrane due to the hydrostatic pressure is not neglected so that the shape of F is
given by the solution of (3.1). Figure 5 shows a plot of A Im(u,) versus the container length
L, where AIm(u,) is given by

Am“M)=hmﬁi;F$”0’

in which u, is the first eigenmode of the fluid and u, the corresponding mode in a similarly
shaped rigid container. We have also plotted the curve AA, versus L where AA, is obtained
from (4.8). Observe that, even though viscous effects and bending of the membrane are
neglected in the analytical calculation, there is a close agreement between the numerical and
analytical results. It follows that for small Bond numbers the bending of the membrane due
to the hydrostatic pressure may be neglected (cf. the assumptions made in the analysis of
Section 4).

As was pointed out in Section 5, we expect to observe at least two different types of
normal oscillation modes namely, free-surface modes and the structural-vibration modes. We
now investigate some of the characteristics of these modes. We consider the same container
as in the previous experiment with L =1 and choose the parameter values Re =5 x 10°,
Bo=0.2 and r, = 1. In Fig. 6 vector plots of the fluid velocity are shown of the first two
free-surface modes (6a,b) and the first and second structural-vibration modes (6c, d).
Observe that, for the present parameter values, the membrane is hardly deflected in the case

. 8915 4+
.28124 T
T.aaas{ +
. 9286 +
Alm(u,) [ ]
. 2003 T
.am [ nninnnninnnlinnnLiALAA)lLJJAAq

.8 2.8 4.2 6.8
L —

Fig. 5. Plots of AIm(p,) and AX, versus L. The solid line is the analytical curve for AA, obtained from (4.8), the
values of AIm(u,) are denoted by a O.
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of the free-surface modes. In the case of the principal structural-vibration mode the
membrane is deflected significantly causing the free surface to be displaced as well. In the
case of the second structural-vibration mode the membrane is deflected significantly while
the free surface is hardly effected. The calculated eigenvalues corresponding to both types of
oscillation modes are shown in Table 1. Note that the damping coefficients of the structural-
vibration modes are significantly less than those of the free-surface modes corresponding to
the same modal number. The number in brackets behind the eigenfrequencies of the first
and second structural vibration modes in Table 1, are the first and second eigenfrequencies
respectively of a freely vibrating membrane. We observe that the inertia of the fluid lowers
the imaginary part of the eigenfrequencies. These results are in accordance with the
qualitative remarks made in Section 5.

We next investigate how eigenfrequencies corresponding to the free-surface and structural-
vibration modes vary as a function of the Bond number. Since the functional dependence is,
as we shall find, critically dependent on the Reynolds number, we perform the calculations
for two representative values of the Reynolds number, namely Re =35 X 10* and Re=
5 x 10°. The container to be considered is as in the previous calculations with L =1, a = 0.9
and r, = 1. We restrict our investigation to the dependence on Bo of the second free-surface
mode (denoted by w,) and the first structural-vibration mode (denoted by u,). The Bond
number is taken in the range 0.9 < Bo <1.6. In Fig. 7a we have plotted Im( ;) (the dotted
line) and Im( ) (the drawn line) versus Bo for the case Re =5 X 10°. Observe that Im( Hy) is
virtually independent of Bo. In fact Im(u,) = 2.5 which is equal to the imaginary part of the
second free-surface mode in a rigid rectangular container with the same dimensions. The
drawn line in Fig. 7a is a curve proportional to 1/V Bo and intersects the curve of Im( )
near Bo =~ 1.2. The dependence of the real parts of u and u, on Bo is shown in Fig. 7b. Note
that Re(u,) and Re( ) do not change significantly with Bo and that Re(u,) > Re(u,).

Let us next consider the case in which Re =5 x 10°. In Fig. 8a we have plotted Im( )
corresponding to the free-surface and structural-vibration modes as a function of Bo. Figure
8b shows the dependence on Bo of the corresponding values of Re(1). We observe that for
Bo up to Bo = 1.2 the dotted curve behaves quite similar to the dotted curve in Fig. 7a, i.e.
it represents the free-surface mode which is independent of Bo. However, near Bo =~ 1.2 (the
point at which the curves in Fig. 7a intersect) the dotted curve starts to decrease and its
shape starts to resemble that of the drawn curve in Fig. 7a. This suggests that the
free-surface mode has changed over into a structural-vibration mode. Inspection of the
corresponding eigenfunctions reveals that this is indeed the case. Regarding the drawn line in
Fig. 8a we observe the opposite behaviour: it first represents structural-vibration modes but
changes over into a branch representing free-surface modes after Bo=1.2. When we
consider Re( ) of the corresponding modes (Fig. 8b), we observe a rapid decrease in Re( )
as the free-surface mode changes over into a structural vibration mode (dotted line) and the
opposite behaviour when the structural mode changes over into a free-surface mode (drawn

Table 1.
n Type of mode
-0.097 + 1.76i First free-surface mode
-0.21 + 2.49 Second free-surface mode
-0.038 + 6.20i (7.81) First structural-vibration mode

~0.052+ 14.1i (15.61) Second structural-vibration mode
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Fig. 6. Velocity vector plots of the first (a) and second (b) free-surface modes and the first (c) and second (d)
structural-vibration modes.
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line). The qualitative statements of Section 5 regarding free-surface and structural-vibration
modes are, apart from the behaviour in the transition region near Bo =1.2, still valid.
Namely, free-surface modes are independent of Bo and damped more than the structural-
vibration modes, the structural-vibration modes display a 1/ Bo behaviour.

The bifurcation behaviour of the curves in Fig. 8a is typical for the case when branches,
representing two types of eigenmodes of a system without damping, meet for a certain
parameter value. See for example Santini and Barboni [19] who consider the normal modes
of a system consisting of an inviscid fluid and a translationally or rotationally moveable wall.
We find that the bifurcation behaviour is not removed when damping is included (Fig. 8a,
high Reynolds number) but only when damping is sufficiently high (Fig. 7a, low Reynolds
number). Note that in the complex plane the branches corresponding to free-surface and
structural-vibration modes always remain separated since for no value of Bo are the real and
imaginary parts of the two modes identical.

Streamlines of the eigenfunctions corresponding to eigenmodes in the transition region
near Bo=1.2 are displayed in Fig. 9. The streamlines in Figs 9a, b, c correspond to the
free-surface modes for Bo = 1.1, 1.2 and 1.3 respectively and Re = 5 x 107 i.e. the imaginary
parts of the corresponding eigenfrequencies lie on the dotted line in Fig. 7a. The streamlines
in Figs 9a and b indicate a significant displacement of the free-surface and the membrane. In
Fig. 9c we observe a pattern characteristic of the second free-surface mode with no
significant displacement of the membrane (cf. Fig. 6b). It follows that the term ‘free-surface
mode’ is not quite justified when the eigenfrequencies of the fluid and structure are close.
Namely, both the free surface and the membrane experience modal displacements. It is in
this case more appropriate to speak of ‘coupled modes’. Next consider the streamlines in
Figs 9d, e, f. They correspond to parameter values Bo =1.1, 1.2 and 1.3 and Re =2 X 10°
The streamlines are of eigenfunctions of which the imaginary parts of the corresponding
eigenfrequencies lie on the dotted line in Fig. 8a. The streamline pattern in Fig. 9d is
characteristic of the second free-surface mode, however, displaying some interaction with the
membrane. The pattern in Fig. 9e is, as Figs 9a and b, a typical coupled-mode pattern: the

3.0 Frbrrberrbrrhrrdrrherrhrreroe . 000 rrvhrhrrhrrhrrhrrberherrerre
L ] L ]
3 p L F
2.8 + T -.008+ +
?- 2.6 1 + ?—.815-5 1
Lm(p) F T ~ : Re(n)
2.4 1 \\\ T+ -.024+¢ T
2.2 4 SR 5- —.832"2 T
2.8 [ mi“"i“";""i““im'i"“i"“i"“im: ~.p40 L h
.8 1.8 1.2 1.4 1.6 1.8 .8 1.81.2 1.4 1.6 1.8
@ (b)

Bo —p Bo

Fig. 8. Figures 8a and b show the dependence on Bo of the imaginary and real parts respectively of the
eigenfrequencies corresponding to the free-surface and first structural-vibration mode for Re=5x 10> The
imaginary part indicated by the dotted line in 8a corresponds to the real part indicated by the dotted line in 8b and
likewise for the drawn lines.



Fluid oscillations 255

@ GY)

(b ©

<

®

Fig. 9. Streamlines of the fluid flow. Figures 9b, ¢ correspond to the parameter values Bo=1.1, Bo=1.2 and
Bo = 1.3 respectively with Re =5 x 10°; the imaginary parts of the eigenmodes lie on the dotted line in Fig. 7a.
Figures 9d, e, f correspond to the same Bond numbers as 9a, b, ¢ respectively but with Re = 5 X 10°; the imaginary
parts of the eigenmodes lie on the dotted line in Fig. 8a.
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Table 2.
First mode Second mode
Re Bo=0.1 Bo=1.0 Bo=0.1 Bo=1.0
1000 —0.029 + 8.78i -0.025+2.77 —-0.037 + 20.0i —0.026 + 6.251
100 -0.11 +8.71i —-0.070+2.73i —0.17 +19.9i —-0.10 +6.20i
10 —0.41 +8.52i —-0.30 +2.64i -0.76 +19.7% —-0.57 +6.08i
1 -2.8 +7.92i -21 +0i —-5.6 +18.61 =53 +3.09

free surface and membrane are displaced significantly. In Fig. 9f we see a pattern which
resembles that of the first structural-vibration mode (cf. Fig. 6¢). Investigating the streamline
patterns of the normal modes corresponding to values of Bo sufficiently far removed from
the value Bo = 1.2, we find that they reduce to the characteristic patterns of the free-surface
and structural vibration modes.

The final aspect of the fluid-structure interaction problem we will investigate, is the
dependence of the structural-vibration mode on the viscosity of the fluid. In Table 2 we have
listed the eigenfrequencies of the first and second structural-vibration modes for various
values of the Reynolds number and two different Bond numbers. Observe that for Bo = 0.1
the damping coefficients increase by two orders of magnitude as Re goes from 1000 to 1
while the imaginary parts decrease by only 10%. For Bo = 1.0 we see the same increase in
the damping coefficients but the decrease in the imaginary parts is considerably more than
for Bo=0.1. For Bo=1.0 and Re=1.0 the imaginary part of the first mode, in fact,
completely vanishes. In order to explain this observation we go back to property (ii) of the
spectrum as formulated in Section 5. Note that, in relation to the results presented in Table
2, we expect the inequality in (ii) to be satisfied for any sufficiently small value of Re.
However, small values of Bo require accordingly smaller values of Re to satisfy the
inequality which is in agreement with the calculations.

8. Conclusions

In this paper we have studied the normal modes of a system consisting of an open vessel with
a flexible wall containing a viscous, incompressible fluid. We have shown that the eigen-
frequencies related to free-surface oscillation modes of an inviscid fluid in a container
decrease when part of the rigid container wall is replaced by a membrane. From the
expression for the eigenvalues of a weakly damped viscous fluid in a flexible container we are
able to deduce a number of qualitative results. Namely, if normal modes exist such that the
membrane is not displaced significantly, then the eigenfrequencies of this mode are
approximately the same as the eigenfrequencies of a viscous fluid in a similarly shaped rigid
container. These modes are termed free-surface oscillation modes and are independent of
the Bond number. On the other hand, if modes exist such that the free surface is displaced
only slightly then the imaginary parts of the corresponding eigenfrequencies are proportional
to 1/V Bo. These modes are termed structural vibration modes, their eigenfrequencies are
less than those of a freely vibrating membrane. Structural vibrations may experience less
damping than the free surface oscillations.

Numerically we find that the results obtained for an inviscid fluid are also true when
viscous effects are included. We find, furthermore, that free-surface and structural-vibration
modes indeed exist. The properties of these modes agree well with the qualitative analytical
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results mentioned above. Of interest is the case in which an eigenfrequency of the fluid is
close to an eigenfrequency of the membrane, and in particular its dependence on the Bond
number. We find that the Reynolds number is an important parameter in this case. For small
values of Re the eigenfrequencies of the free-surface modes are found to be independent of
the Bond number, while the imaginary parts of the eigenfrequencies of the structural-
vibration modes are proportional to the reciprocal of the square root of Bo. For a certain
‘critical’ value of Bo the imaginary parts of both modes coincide. For large values of Re the
graphs of the imaginary parts of the two different modes are globally the same as in the case
of small Re. However, near the aforementioned critical value of Bo to two curves display a
bifurcation-type of behaviour. Namely, for a particular value of Bo the two different
branches correspond to either the free-surface of structural-vibration modes, increasing Bo
will cause the branch representing free-surface modes to change over into a branch
representing structural-vibration modes and vice versa. The changeover occurs in the
neighbourhood of the critical value of Bo. In the vicinity of the critical value of Bo the
normal modes of the fluid and the membrane are coupled, i.e. simultaneous free-surface and
membrane deflections are observed, both closely resembling the corresponding modal
deflections in the uncoupled problem.

Appendix A

Consider the operator L defined by

"

Lu=—-u",
with boundary conditions
u(0)=u(a)=0.
Let K, be the integral operator
Kou= f: K(s, )u(0)de,
with

s
5(0—0), s=0

KO(S’0)= 0
;(a—O), s>0.

Note that the kernel is symmetric so that the integral operator K|, is self adjoint and hence its
eigenvalues are real. One can verify readily that K satisfies the equation

LKu=u.
Let w,(s) denote the eigenfunctions of K, with corresponding eigenvalues «,, viz.

Kw,=a,w,.
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If we apply the operator L to the above equation we obtain

n n?

1
—w,=Lw
a’l
so that the eigenfunctions w,, satisfy the differential equation

1
wi+—w, =0,

a

n

with boundary conditions

w,(0)=w,(a)=0.

We find immediately that a, has to be of the form

2
a

QH=W.

It follows that the eigenvalues of K, are strictly positive so that K|, is positive definite.
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